Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Neurological reasons for consultation and hospitalization during the COVID-19 pandemic.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Background: COVID-19 disease affects the nervous system and led to an increase in neurological consults for patients at admission and through the period of hospitalization during the peak of the pandemic. Methods: Patients with clinical and laboratory diagnosis of COVID-19 that required a neurologic consultation or those who presented with neurological problems on admission that led to a diagnosis of SARS-CoV-2 infection during a 2-month period at the peak of the pandemic were included in this study. Demographic and clinical variables were analyzed. Results: Thirty-five patients were included. The presenting neurologic manifestations on admission led to the diagnosis of COVID-19 in 14 patients (40%). The most common reasons for consultation during the hospitalization period were stroke (11), encephalopathy (7), seizures (6), and neuropathies (5) followed by a miscellaneous of syncope (2), migraine (1), anosmia (1), critical illness myopathy (1), and exacerbation of residual dysarthria (1). The most common neurological disturbances were associated with severe disease except for neuropathies. Patients with encephalopathies and seizures had markedly increased D-dimer and ferritin values, even higher than stroke patients. RT-PCR was performed in 8 CSF samples and was negative in all of them. Conclusion: Neurological disturbances represent a significant and severe burden in COVID-19 patients, and they can be the presenting condition that leads to the diagnosis of the viral infection in a high percentage of patients. Evidence of direct viral mechanisms was scarce, but the pathogenesis of the diverse manifestations remains enigmatic. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Neurological Sciences is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)